*16.3 Finding potential functions for conservative vector fields.

- Summary ot what we have:
- $\vec{F}=\left(\overrightarrow{M, N_{\gamma} P}\right)$ is conservative if $\vec{F}=\nabla f$ foursome. Q1: How do we know a given f is coucervalie? Q2: Given f is conservative, how do we find f ?
- Theorem (1): If of $\vec{F} \cdot d s=0$ fou every closed curve, then \vec{F} is conservative and
- Theorem (2): If Curl $\vec{F}=0$ in a simply connected Domain D, then \vec{F} is conservative
Picture $: \mathbb{R} \xrightarrow{\nabla} \mathbb{R}^{3} \xrightarrow{\text { Cool }} \mathbb{R}^{3} \xrightarrow{\text { Div }} \mathbb{R}$
2 in a row give zero: $\operatorname{Curl}(\nabla f)=0=\operatorname{Div}(\operatorname{Curl} \vec{f})$
Ideas: Stokes The: $\left.\iint_{\&} C u r\right) \vec{F} \cdot \vec{n} d, s=\int_{e}^{\vec{F}} \cdot \vec{T} d s$
"Supply connected means you can contract closed curves to a point, so

Theorems (1) \& (2) answer Q1 -
Q1: How do you determine whether \vec{F} is conservative? Before addressing Q2, we do an example:

Example (1) Its easy to constancy conservative vector fields - just choose f bet $\vec{F}=\nabla f$
Eg choose $f(\underset{x}{x})=f\left(\frac{x, y, z}{y}\right)=x y^{2} z^{3}+y^{2} z+2 z$

$$
\begin{aligned}
& \text { Set } \vec{F}=\nabla f=\left(\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}\right) \quad \frac{\partial f}{\partial x}=y^{2} z^{3} \\
& \Rightarrow \vec{F}=\left(y^{2} z^{3}, 2 x y z^{3}+2 y z, 3 x y^{2} z^{2}+y^{2}+2\right) \quad \frac{\partial f}{\partial y}=2 x y z^{3}+2 y z \\
& \text { But given } \vec{F} \text { not knowing } f \text {, } \\
& \text { how do you know } f \text { exists } \\
& \frac{\partial f}{\partial z}=3 x y^{2} z^{2}+y^{2}+2
\end{aligned}
$$ such that $\vec{F}=\nabla f$?

Ans: Thm (2) says check $\operatorname{Curl} \vec{F}=0$ and make sure this hold on a simply connected Domain P. Since \vec{F} is defined for all $x \in \mathbb{R}^{3}$, (clearly \mathbb{R}^{3} is simply counectedl, we reed only cheek that $\operatorname{Curl} \vec{F}=0$ for every $\underset{\sim}{x} \in \mathbb{R}^{3}$. We already know this since Cor l $\nabla f=0$, but assume we don't?
know?

Example (1) (cont) so lets assume we are given $\vec{F}=\left(y^{2} z^{3}, 2 x y z^{3}+2 y z, 3 x y^{2} z^{2}+y^{2}+2\right)$ and we do not know it came from $f(x)=x y^{2} z^{3}+y^{2} z+2 z$ How would we determine \vec{F} is conservative?
Ans: we take the Curl:

$$
\begin{aligned}
& \operatorname{Cur}\left|\vec{F}=\left|\begin{array}{ccc}
\dot{\sim} & \dot{\sim} & \underset{\sim}{\dot{j}} \\
\partial_{x} & \tilde{\partial}_{y} & \partial_{z} \\
y^{2} z^{3}, 2 x y z^{3}+2 y z, & 3 x y^{2} z^{2}+y^{2}+2
\end{array}\right| \longleftarrow \vec{F}=\overline{(M, N, P)}\right. \\
& =\sum_{\sim}^{i}\left(P_{y}-N_{z}\right)-\underset{\sim}{j}\left(P_{x}-M_{z}\right)+{\underset{\sim}{x}}\left(N_{x}-M_{y}\right) \\
& =\underset{\sim}{i}\left(6 x y z^{2}+2 y-6 x y z^{2}-2 y\right)-\underset{\sim}{j}\left(3 y^{2} z^{2}-3 y^{2} z^{2}\right) \\
& +k 2\left(2 y z^{3}-2 y z^{3}\right)=0
\end{aligned}
$$

Conclude: $=0$ on a simply conduced domain $D=\mathbb{R}^{3} \underset{\text { Thy (2) }}{\Rightarrow} \vec{F}$ is conservative.

Q2: How do we find $f(x, y, z)$ given we know \vec{F} is conservative?

We now describe the procedure which always recovers f such that $\nabla f=\vec{F}$ when we are given \vec{F} and we know \vec{F} is conservative. we work out the procedure in this example - the general will then be clear from the steps in the example $\vec{F}=\underbrace{y^{2} z^{3}}_{M^{2}}, \underbrace{2 x y z^{3}+2 y z}_{N}, \underbrace{3 x y^{2} z^{2}+y^{2}+2}_{P})$
(1) Since $\frac{\partial f}{\partial x}=M$, write

$$
f=\int_{x} M d x=\int_{x} y^{2} z^{3} d x
$$

$$
=x y^{2} z^{3}+\widetilde{g(y, z)}
$$

(2) Take $\frac{\partial}{\partial y}$ of f in (1) and when you take compare it with N $\frac{\partial f}{\partial x}$

$$
\begin{aligned}
& \frac{\partial f}{\partial y}=\frac{\partial}{\partial y}\left(x y^{2} z^{3}+g(y, z)\right)=2 x y z^{3}+\frac{\partial g}{\partial y}(y, z) \\
& \text { It remains to find } g(y, z)=\underbrace{2 x y z^{3}+2 y z}_{N}
\end{aligned}
$$

(3) The equation for $g(y, z)$ is

$$
\begin{gathered}
\frac{\partial}{\partial y} g(y, z)=2 y z \\
\text { So } g(y, z)=\int_{y} 2 y z d y=y^{2} z+h(z)
\end{gathered}
$$

Now put this new info about g back into (1)

$$
\begin{equation*}
f=x y^{2} z^{3}+y^{2} z+h(z) \tag{*}
\end{equation*}
$$

(4) Now do step (2) with z in place of y using the updated of

$$
\frac{\partial f}{\partial z}=3 x y^{2} z^{2}+y^{2}+h^{\prime}(z)=\underbrace{3 x y^{2} z^{2}+y^{2}+2}_{P}
$$

(5) The equation for h is

$$
h^{\prime}(z)=2
$$

So $h(z)=2 z+$ cons
Use this to update [*) to obtain f

$$
f(x, y, z)=\underbrace{x y^{2} z^{3}+y^{2} z+2 z}_{\text {our original } f}+\underbrace{\text { const }}_{\nabla(f+c)}=\nabla f=\vec{F}
$$

Example (2) $\vec{F}=(\underbrace{\frac{\cos x}{r}-\frac{x \sin x}{r^{2}}}, \underbrace{\frac{y \sin x}{r^{2}}}, \underbrace{\frac{z \sin x}{r^{2}}})$
Determine whether \vec{F} is conservative wo finding f.
Soln: \vec{F} is defined for all $\underset{\sim}{x} \in \mathbb{R}^{3}$ except $\underset{\sim}{x}=0$, which is simply connected. Thus by The (2), it suffices to check Curl F $=0$ for all $\underset{\sim}{x} \neq 0$.

$$
\begin{aligned}
& \text { Curl } \vec{F}=\left|\begin{array}{ccc}
i & j & \frac{h}{2} \\
\partial x & \partial y & \partial z \\
M & N & P
\end{array}\right|=\underset{\sim}{i}\left(P_{y}-N_{z}\right)-\underset{\sim}{j}\left(P_{x}-M_{z}\right)+n_{2}\left(N_{x}-M_{y}\right) \\
& P_{y}=\frac{\partial}{\partial y}\left(\frac{z \sin x}{r^{2}}\right)=z \sin x(-2) r^{-3} \frac{y}{r} ; N_{z}=\frac{\partial}{\partial z}\left(\frac{y \sin x}{r^{2}}\right)=y \sin x(-2) r^{-3} \frac{z}{r} \\
& P_{y}-N_{z}=-\frac{2 y z \sin x}{r^{4}}+\frac{2 z y \sin x}{r^{4}}=0 \quad r \\
& \text { Similarly- } P_{x}-M_{z}=0=N_{x}-M_{y} \quad \text { (Homework) } \\
& \text { Conclude: Curl } \vec{F}=0 \text { in S.C. Domain } \Rightarrow \text { Conservative } \\
& \text { Chm (2) }
\end{aligned}
$$

Example (3) List and explain properties of line integrals
$\int_{e} \vec{F} \cdot \vec{T} d s$ is defined as a Riemann Sum
Since this is

$$
\int_{e} \vec{F} \cdot \vec{T} d s=\lim _{N \rightarrow \infty} \sum_{k=1}^{N} \vec{F}_{k} \cdot \vec{T}_{k} \Delta s
$$ just a sum, and

it doesn't matter what order you add things up, you get

(1)

$$
\begin{aligned}
& \int_{e} \vec{F} \cdot \vec{T} d s=\int_{e_{1}} \vec{F} \cdot \vec{T} d s+\int_{e_{2}} \vec{F} \cdot \vec{T} d s \\
& e=C_{1}+e_{2} B
\end{aligned}
$$

(2) $\int_{e}\left(\vec{F}_{1}+\vec{F}_{2}\right) \cdot \vec{T} d s=\int_{e} \vec{F}_{1} \cdot \vec{T} d s+\int_{e} \vec{F}_{2} \cdot \vec{T} d s$

$$
\begin{aligned}
& =\int_{e} \vec{F}_{1} \cdot \vec{T} d s+\int_{e} \vec{F}_{2} \cdot \vec{T} d s \\
& \vec{F}_{1}=F_{1} \\
& \left(\vec{F}_{1}+\vec{F}_{2}\right) \cdot \vec{T}=\vec{F}_{1} \cdot \vec{T}+\vec{F}_{2} \cdot \vec{T} \quad \vec{T}
\end{aligned}
$$

(3) $\int_{e} \vec{F} \cdot \vec{T} d s=-\int_{-e} \vec{F} \cdot \vec{T} d s$ the only change in the arclength parameter picture is \vec{T} reverses
To see this note: its sign...

$$
\begin{aligned}
& \int_{e} \vec{F} \cdot \vec{T} d s=\lim _{N \rightarrow \infty} \sum_{k=1}^{N} \vec{F}_{n} \cdot \vec{T}_{k} \Delta s \quad \text { using the } \vec{T}_{n} \text { from } \\
& \int \vec{F} \cdot \vec{T} d s=\lim _{N \rightarrow \infty} \sum_{k=1}^{N} \vec{F}_{n} \cdot\left(-\vec{T}_{n}\right) \Delta S \\
&=-\lim _{N \rightarrow \infty} \sum_{k=1}^{N} \vec{F}_{n} \cdot \vec{T}_{n} \Delta s=-\int_{e} \vec{F} \cdot \vec{T} d S \\
& \int \vec{F} \cdot \vec{T} d s=\lim _{N \rightarrow \infty} \sum_{k=1}^{N} \vec{F}_{k} \cdot \vec{T}_{k} \Delta s \\
& e
\end{aligned}
$$

For $-C$, the $\underset{\sim}{x}$'s run from $B \rightarrow A$ as $k=1 \rightarrow N$,
 B so \mathcal{T} reverses its sign n...

Famous Example: Recall $\vec{F}=\frac{-y}{r^{2}} i+\frac{x}{r^{2}} \underset{\sim}{j}$
This we showed was Curl free:

$$
\begin{aligned}
& \operatorname{Cur}\left|\vec{F}=\left|\begin{array}{ccc}
\frac{i}{2 x} & \frac{j}{\partial y} & \frac{m}{\partial z} \\
-\frac{y}{r^{2}} & \frac{x}{r^{2}} & 0
\end{array}\right|=\frac{k}{2}\left(\frac{\partial}{\partial y}\left(-\frac{y}{r^{2}}\right)-\frac{\partial}{\partial x}\left(\frac{x}{r^{2}}\right)\right)\right. \\
& \frac{\partial}{\partial y}\left(-\frac{y}{r^{2}}\right)=-\frac{1}{r^{2}}+\frac{2 y}{r^{3}} \frac{y}{r} \\
& \frac{\partial}{\partial x}\left(\frac{x}{r^{2}}\right)=-\frac{1}{r^{2}}+\frac{2 x}{r^{3}} \frac{x}{r} \\
& \operatorname{Curl} \vec{F}=-\frac{2}{r^{2}}+\frac{2\left(y^{2}+x^{2}\right)}{r^{3}}=0 r
\end{aligned}
$$

But: \vec{F} not defined at $r=0$, any $z \Rightarrow$ not defined on z-axis, so we do not have C url $\vec{F}=0$ on a simply connected do main \Rightarrow of $\vec{F} \cdot \vec{T}$ need not always be zero $\Rightarrow \vec{F}$ need not be conservative.

In fact we showed:

$$
\begin{aligned}
& \$ \vec{F} \cdot \vec{T} d s=\int_{0}^{2 \pi}(-y, x)(-\sin t, \cos t) d t=2 \pi \neq 0 \\
& e \quad \vec{r}(t)=\cos t i+\sin t i
\end{aligned}
$$

so there can be no f st $\nabla f=\vec{F}$, ow,

$$
\oint_{e}^{\oint \vec{F} \cdot \vec{T} d s}=0 \neq 2 \pi \rho_{0}^{l}
$$

But there is an interesting continuation of The story, oo
Consider: $\vec{F}=-\frac{y}{r^{2}} i+\frac{x}{r^{2}} \frac{j}{2}$
with P_{n} given by: $\vec{r}(t)=\cos t \underset{\sim}{i}+\sin t \underset{\sim}{\dot{j}}+t(2 n \pi-t) \underset{\sim}{n}$

$$
0 \leq t \leq 2 n \pi
$$

Note C_{n} is closed:

$$
\begin{aligned}
& \vec{r}(0)=\cos 0 i+\sin 0 \hat{j}=i \\
& \vec{r}(2 n \pi)=\cos 2 n \pi i+\sin 2 n \pi j<2
\end{aligned}
$$

l_{n} spirits around z-axis n-times.

Consider now the "angle function"

$$
\begin{aligned}
& \theta=\arctan \left(\frac{y}{x}\right) \\
& \frac{\partial \theta}{\partial x}=\frac{1}{1+\left(\frac{y}{x}\right)^{2}} \frac{\partial}{\partial x}\left(\frac{y}{x}\right)=\frac{x^{2}}{x^{2}+y^{2}} \frac{y}{-x^{2}} \\
& =-\frac{y}{r^{2}} \\
& \frac{\partial \theta}{\partial y}=\frac{1}{1+\left(\frac{y}{x}\right)^{2}} \frac{1}{x}=\frac{x^{2}}{x^{2}+y^{2}} \frac{1}{x}=\frac{x}{r^{2}} \\
& \text { So } \nabla \theta(x, y)=\left(\overline{\left.-\frac{y}{r^{2}}, \frac{x}{r^{2}}\right)}=\vec{F}\right. \\
& \text { Thus } \quad \int_{\text {S }} \quad \vec{F} \cdot \vec{T} d s={ }^{\prime \prime} \theta(B)-\theta(A)^{\prime \prime}=2 \pi n r
\end{aligned}
$$

But this is not really correct because $\theta=\arctan \left(\frac{y}{x}\right)$ is not defined on x-axis \Rightarrow θ not defined when e_{n} crosses $x=0 \quad{ }_{0}^{0}$ Still: Some thing looks correct?

In fact: This is the central issue of complex Variables - How to put the $i=\sqrt{-1}$ into Calc
Consider $f(z)=\frac{1}{z}=\frac{1}{x+i y}=\frac{x-i y}{x^{2}+y^{2}}=\frac{x}{r^{2}}+\frac{-y}{r^{2}} i$

$$
\begin{aligned}
& \oint_{e_{n}} \frac{d z}{z}=\oint_{e_{n}} \frac{d x+i d y}{x+i y}=\oint_{e_{n}}^{e_{n}+y^{2}} \frac{(d x+i d y)(x-i y)}{r^{2}} \\
& =\oint_{e_{n}} \frac{x d x+y d y}{r^{2}}+i \oint_{2} \frac{-y d x+x d y}{r}=\cos t i+\sin t \underset{\sim}{j} \\
& =\int_{0}^{2 \pi n} \frac{\cos t(-\sin t)+\sin t(\cos t)}{r^{2}} d t+i \oint_{e_{n}} \vec{F} \cdot \vec{T} d s=2 \pi n i
\end{aligned}
$$

0
Turns out: You can make sense of $f(z)=z^{n}, z^{-n}$, and we can differentiate and integrate, and $\int_{e_{n}} z^{n} d z=0$ for every n except $n=-1$
Turns out: $f(z)=\frac{1}{z}, \frac{d z}{z}=2 \pi n i$, is the most important function in complex variables

