- 18 \$16.3 Finding potential functions for conservative () vector fields.
- A Summary of what we have:
 - $\vec{F} = (M, N, P)$ is conservative if $\vec{F} = \nabla f$ for some f. Q1: How do we know a given f is concervative? Q2: Given f is conservative, how do we find f?
 - Theorem D: If \$ \$ t. ds = 0 for every closed
 - curve, then \vec{F} is concervative and $f(x) = \int_{x}^{x} \vec{F} \cdot \vec{F} \, ds$ (indeptot) \vec{E}_{1} f(x) = A
 - Theorem D: If Curlif =0 in a simply connected Domain D, then F is conservative Picture: R - V > R³ - Curl > R³ Div > R
 - 2 in a row give zero: Curl(Vf)=0=Div(Curl)
 - Idea: Stokes Thm: SJCur)F. Ads = SF. 785

"Simply connected means you can contract closed curves to a point, so Stokes $\Rightarrow f \vec{F} \cdot \vec{T} ds = 0 \forall closed P \Rightarrow \vec{F} conservative}$

Example (cont) so lets assume we are
given
$$\vec{F} = (y^2 z_3^3 z x y z_3^3 + 2yz_3^2 x y^2 z_3^2 + y^2 + z_3^2)$$
 and we
do not know it came from $f(x) = x y^2 z_3^2 + y^2 z + 2z_3^2$
How would we determine \vec{F} is conservative?
Ans: We take the Curl:

$$Curl\hat{F} = \begin{bmatrix} 1 & 1 & 1 \\ 2x & 3y & 3z \\ y^2 z^3 2xyz^3 + 2yz 3xy^2 z^2 + y^2 + 2 \\ y^2 z^3 2xyz^3 + 2yz 3xy^2 z^2 + y^2 + 2 \\ \end{bmatrix} \leftarrow \hat{F} = (M, N, \hat{P})$$

$$= \frac{1}{2} \left(P_{y} - N_{z} \right) - \frac{1}{2} \left(P_{x} - M_{z} \right) + \frac{1}{2} \left(N_{x} - M_{y} \right)$$

$$= \frac{1}{2} \left(6 \times \frac{1}{2} + \frac{1}{2} + \frac{1}{2} - \frac{1}{2} + \frac{1}{$$

Conclude: Curlière on a simply connected
domain
$$D = R^3 \implies F$$
 is conservative.
Thm (2)

Q2: How do we find f(x,y,z) given we know F is conservative?

We now describe the procedure which always
recovers f such that
$$\nabla f = \tilde{F}$$
 when we are
given \tilde{F} and we know \tilde{F} is concervative. We
usork out the procedure in this example — the
general will then be clear from the steps
in the example $\tilde{F} = (y^2 z^3, 2xyz^3 + 2yz, 3xy^2 z^2 + y^2 + z^2)$
boal-recover F : M N P
D Since $\frac{2f}{\partial x} = M$, write $f = \int M dx$
 $f = \int M dx = \int y^2 z^3 dx$
 $x = xy^2 z^3 + g(y,z)$ that vanishes
 $x = xy^2 z^3 + g(y,z)$ when you take
 $\frac{2f}{\partial y} = \frac{2}{\partial y}(xy^2 z^3 + g(y,z)) = 2xyz^3 + \frac{2yz}{\partial y}(y,z)$
It remains to find $g(y,z)$

(5) 3) The equation for g(8,2) is = 8(8,2) = 24Z So $g(8,z) = \int_{y}^{2} yz \, dy = y^{2}z + h(z)$ Now put this new info about g back into D $f = xy^2 z^3 + y^2 z + h(z)$ (*) (D) Now do step (2) with z in place of y using the updated f $\frac{2f}{2z} = 3\chi y^2 z^2 + y^2 + h'(z) = 3\chi y^2 z^2 + y^2 + 2$ P 5 The equation for h is h'(2) = 2So h(z) = 2z + constUse this to update (*) to obtain f $f(x, b, t) = xy^2 t^3 + y^2 t + 2t + const$ $\nabla(f+c) = \nabla f = F$ our original f

Example (a)
$$\vec{F} = \begin{pmatrix} \cos x & -x \sin x \\ r^2 & r^2 \end{pmatrix}$$
, $\frac{y \sin x}{r^2}$, $\frac{z \sin x}{r^2}$
Determine whether \vec{F} is conservative
 w_0 finding f .
Soln: \vec{F} is defined for all $x \in \mathbb{R}^3$
except $x = 0$, which is simply connected thus
by thm (D), it suffices to check $Curl\vec{F} = D$
for all $x \neq 0$.
 $Curl\vec{F} = \begin{bmatrix} z & y & y \\ \partial x & \partial y & \partial z \\ M & N & P \end{bmatrix} = \frac{1}{2} (P_y - N_z) - \frac{1}{2} (P_x - M_z) + \frac{1}{2} (P_x - M_z)$

 $P_{y} - N_{z} = \frac{2yz \sin x}{r^{4}} + \frac{2zy \sin x}{r^{4}} = 0$ $F_{y} - N_{z} = \frac{2yz \sin x}{r^{4}} + \frac{2zy \sin x}{r^{4}} = 0$ $F_{x} - M_{z} = 0 = N_{x} - M_{y} \quad (Homework)$ $F_{x} - M_{z} = 0 = N_{x} - M_{y} \quad (Homework)$ $F_{x} - M_{z} = 0 = N_{x} - M_{y} \quad (Homework)$ $F_{x} - M_{z} = 0 = N_{x} - M_{y} \quad (Homework)$ $F_{x} - M_{z} = 0 = N_{x} - M_{y} \quad (Homework)$ $F_{x} - M_{z} = 0 = N_{x} - M_{y} \quad (Homework)$

()
$$\int \vec{F} \cdot \vec{F} \, ds = \int \vec{F} \cdot \vec{F} \, ds + \int \vec{F} \cdot \vec{F} \, ds$$

 $P = P_1 + P_2$
(2) $\int (\vec{F}_1 + \vec{F}_2) \cdot \vec{T} \, ds = \int \vec{F}_1 \cdot \vec{T} \, ds + \int \vec{F}_2 \cdot \vec{T} \, ds$
 $(\vec{F}_1 + \vec{F}_2) \cdot \vec{T} - \vec{F}_1 \cdot \vec{T} + \vec{F}_2 \cdot \vec{T}$

(3)
$$\int \vec{F} \cdot \vec{T} \, ds = -\int \vec{F} \cdot \vec{T} \, ds$$
 the only change in (8)
 $C = -C$ the arclength parameter
picture is \vec{T} reverses
 $To see this note: its sign ...
 $\int \vec{F} \cdot \vec{T} \, ds = \lim_{N \to a} \sum_{h=1}^{N} \vec{F}_h \cdot \vec{T}_h \Delta s$ using the \vec{T}_h from
 $C = N \to a h = 1$ is using the \vec{T}_h from
 $f \vec{F} \cdot \vec{T} \, ds = \lim_{N \to a} \sum_{h=1}^{N} \vec{F}_h \cdot (-\vec{T}_h) \Delta s$
 $\int \vec{F} \cdot \vec{T} \, ds = \lim_{N \to a} \sum_{h=1}^{N} \vec{F}_h \cdot \vec{T}_h \Delta s = -\int \vec{F} \cdot \vec{T} \, ds$
 $= -\lim_{N \to a} \sum_{h=1}^{N} \vec{F}_h \cdot \vec{T}_h \Delta s = -\int_{C} \vec{F} \cdot \vec{T} \, ds$$

F. Tols = lim
$$\sum_{N \to 0}^{N} F_{N} T_{N} \Delta S$$

 $N \to 00 R^{=1}$
For - C, the χ_{h} 's run A
from $B \to A$ as $R = 1 \to N$, $F_{N} T_{N}$
so T reverses its sign...

B Famous Example: Recall $\vec{F} = -\frac{\delta}{r_{1}} \vec{i} + \frac{x}{r_{2}} \vec{\delta}$. This we showed was Curl free: $\begin{array}{c} C_{V} \cdot | \hat{F} = \left| \begin{array}{c} \hat{L} & \hat{A} & M \\ \partial x & \partial y & \partial z \\ -\frac{M}{2} & \frac{M}{2} & 0 \end{array} \right| = \frac{h}{2} \left(\frac{\partial}{\partial y} \left(-\frac{M}{2} \right) - \frac{\partial}{\partial x} \left(\frac{M}{2} \right) \right) \end{array}$ $\frac{\partial}{\partial y}\left(-\frac{\partial}{r^{2}}\right) = -\frac{1}{r^{2}} + \frac{29}{r^{3}}\frac{y}{r}$ $\frac{Q}{\partial X} \left(\frac{X}{V^2} \right) = -\frac{L}{V^2} + \frac{2X}{V^3} \frac{Z}{V}$ $\operatorname{Curl}\vec{F} = -\frac{2}{r^2} + \frac{2(\theta^2 + \chi^2)}{r^3} = 0 r$ But: F not defined at r=0, any z =) not defined on z-axis, so we do not have Culf=0 on a simply connected domain => \$F.7 need not always be zero => F need not be conservative

10

Consider now the "angle function"

$$\begin{array}{l}
\Theta = \arctan\left(\frac{\psi}{x}\right) \\
\Theta = \arctan\left(\frac{\psi}{x}\right) \\
\Theta = \frac{1}{1+\left(\frac{\psi}{x}\right)^{2}} \\
\Theta = \frac{1}{2} \\
\frac$$

In fact: This is the central issue of complex
Variables - How to put the
$$\hat{z}=\sqrt{-1}$$
 into Calc
Consider $f(z) = \frac{1}{z} = \frac{1}{x+iy} = \frac{x-iy}{x^2+y^2} = \frac{x}{r^2} + \frac{3}{r^4}\hat{z}$
 $\oint \frac{dz}{z} = \oint \frac{dx+idy}{x+iy} = \oint (\frac{dx+idy}{x^2+y^2}) \frac{(x-iy)}{x^2+y^2}$
 $= \oint \frac{xdx+ydy}{r^2} + i\int -\frac{ydx+xdy}{r^2}$ $\hat{r} = \cos t \hat{z} + \sin t \hat{z}$
 $= \int \frac{xdx+ydy}{r^2} + i\int -\frac{ydx+xdy}{r^2}$ $\hat{r}^2 = \cos t \hat{z} + \sin t \hat{z}$
 $= \int \frac{\cos t}{r^2} \frac{(-\sin t)}{r^2} + \sin t (\cos t) dt + i \oint \hat{F} \cdot \hat{F} dS = 2\pi n i$
Turns out: You can make sence of $f(\hat{z}) = z^n, z^n$,
and we can differentiate and integrate, and

and we can children
$$n except n = -1$$

 $\int_{e_1}^{2} d^2 = 0$ for every $n except n = -1$
 $\int_{e_1}^{2} d^2 = 0$ for every $n except n = -1$
 $\int_{e_1}^{2} d^2 = 2\pi n^2$, is
Turns out: $f(2) = \frac{1}{2}$, $\int_{e_1}^{2} \frac{d^2}{2} = 2\pi n^2$, is
the most important function in complex variables 0

